CUHK Department of Mathematics
 Enrichment Programme for Young Mathematics Talents 2019
 Number Theory and Cryptography (SAYT1114)
 Quiz 2

- The total score for the quiz is $100+25$ (25 points for the bonus question).
- If you obtain X points, your score will be $\min (X, 100)$.
- Time allowed: 90 minutes.
- The use of calculator is allowed.
- Unless otherwise specified, all variables defined in the quiz paper are integers.
- The function φ is the Euler totient function.

Q1. ($\mathbf{1 0}$ points) True or false. For each of the statements below, determine if it is true or false. You are not required to justify your answer.
(a) (2 points) There are infinitely many primes in the form of $1234 k+567$.
(b) (2 points) For any real number $x,\lfloor\lfloor x\rfloor\rfloor=\lfloor x\rfloor$.
(c) (2 points) There exists $M>0$ such that $\varphi(n) \nmid n$ for all $n \geq M$.
(d) $(2$ points) If $4 a \equiv 8 b(\bmod 30)$, then $3 a \equiv b(\bmod 5)$.
(e) (2 points) If $3 a \equiv b(\bmod 5)$, then $4 a \equiv 8 b(\bmod 30)$.

Q2. (30 points) Prove the following results regarding the infinitude of primes.
(a) (6 points) Let $n>0$ be in the form of $4 k+3$. Then n has a prime factor in the form of $4 k^{\prime}+3$.
(b) (12 points) Using (a), show that there are infinitely many primes in the form of $4 k+3$.
(c) (12 points) Using (a) and the fact that each prime factor of $n^{2}+2$ must either be equal to 2 or $\equiv 1,3(\bmod 8)$, show that there are infinitely many primes in the form of $8 k+3$.

Q3. (15 points) Prove the following statements. The variables defined in this question are not assumed to be integers.
(a) (6 points) If $x, y \geq 0$, then $\lfloor x\rfloor\lfloor y\rfloor \leq\lfloor x y\rfloor$.
(b) (9 points) $\frac{1}{5} \leq x-\lfloor x\rfloor<\frac{2}{5}$ if and only if $\lfloor 5 x\rfloor=5\lfloor x\rfloor+1$.

Q4. (15 points) Compute the following using results from Lecture 6 .
(a) (5 points) $\varphi(1960)$.
(b) (10 points) The number of integers in $[1,256]$ not divisible by 10,12 , or 15 .

Q5. ($\mathbf{1 5}$ points) Prove the following statements.
(a) (6 points) Given a, b, c, m with c and m nonzero. Then $a \equiv b(\bmod m)$ if and only if $a c \equiv b c(\bmod m c)$.
(b) (9 points) Given a, b, p where p is a prime number. If $a^{2} \equiv b^{2}(\bmod p)$, then $a \equiv b(\bmod p)$ or $a \equiv-b(\bmod p)$.

Q6. (15 points) Consider the linear congruence $14 x \equiv b(\bmod 35)$.
(a) (3 points) Find $\operatorname{gcd}(14,35)$.
(b) (12 points) Find all the incongruent solutions mod 35 for the following values of b :
(i) (6 points) $b=21$.
(ii) (6 points) $b=12$.

Q7 (Bonus Question). (25 points) The Möbius μ ("mu") function $\mu: \mathbb{Z}^{+} \longrightarrow\{-1,0,1\}$ is defined on the set of positive integers as follows:

$$
\mu(n)=\left\{\begin{aligned}
0, & \text { if } k^{2} \mid n \text { for some } k>1 \\
(-1)^{r}, & \text { if } n \text { is a product of } r \text { distinct prime numbers }
\end{aligned}\right.
$$

As a special case, $\mu(1)=(-1)^{0}=1$ since 1 is a product of 0 distinct primes.
(a) (3 points) Compute $\mu(n)$ for $1 \leq n \leq 15$.
(b) (5 points) Prove that $\sum_{d \mid n} \varphi(d)=n$ for all $n>0$. The summation on the left hand side is over all positive divisors d of n.
(c) (17 points) Let f and g be functions defined on the set of positive integers. Suppose g satisfies

$$
g(n)=\sum_{d \mid n} f(d)
$$

for all $n>0$. The Möbius inversion formula asserts that

$$
f(n)=\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right)
$$

for all $n>0$.
(i) (3 points) Using (b) and the Möbius inversion formula, show that

$$
\sum_{d \mid n} \frac{\mu(d)}{d}=\frac{\varphi(n)}{n} .
$$

(ii) (5 points) Show that

$$
\sum_{d \mid n} \mu(d)=\delta(n)
$$

where $\delta(1)=1$ and $\delta(n)=0$ for $n \geq 2$.
(iii) (9 points) Let $F(n)$ be the number of pairs of integers (i, j) such that $1 \leq i, j \leq n$ and $\operatorname{gcd}(i, j)=1$. Show that

$$
F(n)=\sum_{i=1}^{n} \mu(i)\left\lfloor\frac{n}{i}\right\rfloor^{2} .
$$

(Hint: start by writing $F(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} \delta(g c d(i, j))$. .)

The End

